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Summary

To better understand the interplay between protein-
protein binding and protein dynamics, we analyzed

molecular dynamics simulations of 17 protein-protein
complexes and their unbound components. Complex

formation does not restrict the conformational free-
dom of the partner proteins as a whole, but, rather, it

leads to a redistribution of dynamics. We calculate
the change in conformational entropy for seven com-

plexes with quasiharmonic analysis. We see signifi-
cant loss, but also increased or unchanged confor-

mational entropy. Where comparison is possible, the
results are consistent with experimental data. How-

ever, stringent error estimates based on multiple inde-
pendent simulations reveal large uncertainties that are

usually overlooked. We observe substantial gains of

pseudo entropy in individual partner proteins, and
we observe that all complexes retain residual stabiliz-

ing intermolecular motions. Consequently, protein
flexibility has an important influence on the thermo-

dynamics of binding and may disfavor as well as fa-
vor association. These results support a recently

proposed unified model for flexible protein-protein
association.

Introduction

Specific associations between proteins are fundamental
to all aspects of cell biology. However, even with their
atomic detail structures at hand, we are usually still un-
able to predict if, how, and with what affinity two pro-
teins interact. Our understanding is obstructed by the
complex dynamics of the many thousand atoms that
make up the binding partners and the surrounding sol-
vent. Owing to this flexibility, the stability of protein-
protein complexes is strongly influenced by entropic
contributions (Brady and Sharp, 1997), many of which
are notoriously difficult to estimate or measure.

Intuitively, binding is usually assumed to restrict the
flexibility of both partner molecules and, as a conse-
quence, to claim a significant cost of conformational en-
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tropy. However, the effect of protein flexibility on bind-
ing remains elusive, except for the mere fact that
structural changes occur between the free and the
bound states (Betts and Sternberg, 1999; Lo Conte
et al., 1999). Two long-standing models focus on flexibil-
ity to describe the binding process. The popular notion
of induced fit (Koshland, 1958) assumes a passive mu-
tual adaptation, but it does not explain specific recogni-
tion if the two protein structures are not complementary
to start with (Bosshard, 2001). The rival idea of con-
former selection (Monod et al., 1965; Kumar et al.,
2000) suggests a recognition between the two bound
conformations that are postulated to occur within the
diverse structure ensembles of the two free proteins. Ex-
periments have demonstrated the preferential recogni-
tion of distinct subconformations in various binding re-
actions (Kirschner et al., 1966; Austin et al., 1975;
Lancet and Pecht, 1976; Foote and Milstein, 1994; Leder
et al., 1995; Berger et al., 1999; James and Tawfik, 2005).
Likewise, we showed in a previous simulation study that
some conformations among the structure ensembles of
unbound proteins are more prone to recognition than
others (Grünberg et al., 2004). Nevertheless, recognition
seemed not to depend on the presence of the bound
conformation. Furthermore, the postulate of bound con-
formations that have to be visited simultaneously by the
two colliding proteins appears to be inconsistent with
the fast pace of recognition (Grünberg et al., 2004).

The concept of induced fit as well as the conformer
selection model imply a loss of conformational freedom
for both binding partners. Experimental studies do not
actually support this assumption (Forman-Kay, 1999).
Binding of small ligands, peptides, or other proteins
globally rigidifies some proteins (Olejniczak et al.,
1997; Lee et al., 2000; Mercier et al., 2001; Wang et al.,
2001; Kern and Zuiderweg, 2003), whereas others
appear to become more flexible (Stivers et al., 1996;
Yu et al., 1996; Zidek et al., 1999; Vergani et al., 2000;
Yun et al., 2001; Loh et al., 2001; Zhu et al., 2001; Finerty
et al., 2002; Arumugam et al., 2003; Fayos et al., 2003;
Balog et al., 2004). Changes in dynamics are often
detected in regions far from the interacting residues
(Yu et al., 1996; Zidek et al., 1999; Loh et al., 2001;
Wang et al., 2001; Yun et al., 2001; Arumugam et al.,
2003; Fayos et al., 2003). These changes may transfer in-
formation to remote parts of the protein (allostery) (Buck
and Iyengar, 2003), but they have also been suggested
to regulate binding affinity (Steinberg and Scheraga,
1963). Computational studies on three complexes have
predicted a loss of overall conformational entropy
(Viñals et al., 2002; Gohlke and Case, 2004; Hsu et al.,
2004). Conversely, gains were calculated for the dimer-
ization of insulin (Tidor and Karplus, 1994) and were at-
tributed to residual intermolecular motions (Finkelstein
and Janin, 1989) and the redistribution of vibrational
densities (Steinberg and Scheraga, 1963).

Flexibility may thus have considerable influence on
the stability of protein complexes. However, experi-
ments and calculations find no consistent trend even
for the sign of this contribution. The available data
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Table 1. Protein-Protein Complexes Analyzed in This Study

PDB Codes (Chain/Model Identifier) Sizeb

IDa Receptor/Ligand Receptor Ligand Complex Receptor Ligand DResc

c01 Trypsin/Amyloid b-protein precursor inhibitor domain 1BRA 1AAP(A) 1BRC(E:I) 223 56 0

c02 a-chymotrypsinogen/Pancreatic secretory trypsin inhibitor 2CGA(A) 1HPT 1CGI(E:I) 245 56 0

c03 Kallikrein A/Pancreatic trypsin inhibitor 2PKA(AB) 5PTI 2KAI(AB:I) 232 58 21

c04 Subtilisin BPN/Subtilisin inhibitor 1SUP 3SSI 2SIC(E:I) 275 108 21

c05 Extracellular domain of tissue factor/Antibody Fab 5G9 1FGN(LH) 1BOY 1AHW(AB:C) 248 211 211

c06 Humanized anti-lysozyme Fv/Lysozyme 1BVL(AB) 3LTZ 1BVK(AB:C) 224 129 0

c08 Anti-lysozyme antibody Hyhel-63/Lysozyme 1DQQ(AB) 3LTZ 1DQJ(AB:C) 424 129 0

c11 Barnase/Barstar 1A19(A) 1A2P(A) 1BSG(A:E) 108 89 2

c13 Ribonuclease inhibitor/Ribonuclease A 2BNH 7RSA 1DFJ(E:I) 456 124 0

c14 Acetylcholinesterase/Fasciculin-II 1VXR 1FSC(A) 1FSS(A:B) 532 61 0

c15 HIVB-1 NEF/FYN tyrosin kinase SH3 domain 1AVV 1SHF(A) 1AVZ(B:C) 99 59 2

c16 Uracil-DNA glycosylase/Inhibitor 1AKZ 1UGI(A) 1UGH(E:I) 223 83 21

c17 RAS activating domain/RAS 1WER 5P21 1WQ1(R:G) 324 166 24

c19 Glycosyltransferase/Tendamistat 1PIF 2AIT(mdl1) 1BVN(P:T) 495 74 22

c20 CDK2 cyclin-dependant kinase 2/Cyclin A 1HCL 1VIN 1FIN(A:B) 294 252 12

c21 CDK2 cyclin-dependant kinase 2/KAP 1B39(A) 1FPZ(A) 1FQ1(A:B) 290 176 13

c22 Transductin Gt-a/Heteromeric G protein 1TBG(AE) 1TAG 1GOT(A:BG) 408 314 13

a Complex identifier used throughout the paper (retained from www.bmm.icnet.uk/docking/systems.html).
b Size in residues.
c Number of residues resolved in the bound, but not in the free, structure (2, vice versa).
question a general binding-induced loss of conforma-
tional entropy and hence also challenge the models
from which this assumption was derived. The confusion
is fostered by shortcomings of experimental as well as
computational methods and the lack of systematic stud-
ies that cover more than a single complex. Even though
it is possible to make direct measurements with NMR,
these experiments focus on fluctuations of selected
atoms, traditionally backbone amides, that might not
correctly reflect overall flexibility. A recent neutron scat-
tering experiment measured the motion of all hydro-
gens, but it was limited to harmonic vibrations at very
low temperature (Balog et al., 2004). On the other
hand, molecular dynamics can be simulated at full
atomic detail (Frauenfelder and Leeson, 1998), and
entropy estimates can, in theory, be extracted by quasi-
harmonic analysis (Teeter and Case, 1990). However,
when applied to protein-protein complexes (Gohlke
and Case, 2004; Hsu et al., 2004), quasiharmonic calcu-
lations encounter convergence problems and have thus
far yielded unrealistic results (Gohlke and Case, 2004;
Hsu et al., 2004) (also see below). Calculations therefore
resort to normal mode analysis (Case, 1994; Tidor and
Karplus, 1994; Gohlke and Case, 2004), but this ap-
proach cannot account for anharmonic motions or sol-
vent effects. Yet, at physiological temperature, overall
protein flexibility is dominated by such anharmonic mo-
tions (Kitao et al., 1998) and may, to a large extent, be
driven by solvent fluctuations (Fenimore et al., 2004).
Normal mode analysis of static structures may therefore
constitute a rather problematic simplification.

We here look at the dynamics of 17 different protein
complexes (Table 1) in both their free and bound forms
by using molecular dynamics (MD) simulations. We
find that binding leads to a redistribution of dynamics
and that overall flexibility can equally be lost or gained.
We resolve some of the technical issues that thus far
prevented the application of quasiharmonic analysis to
the study of protein-protein interaction and estimate
the entropic contribution to the stability of seven com-
plexes. Our results further question the traditional de-
scription of binding, but they blend in with a unified
model we recently proposed (Grünberg et al., 2004). Ap-
parently, protein flexibility has a large influence on the
thermodynamics of binding and may both favor and dis-
favor association.

Results and Discussion

Flexibility of Free and Bound States
We selected a set of 17 protein-protein complexes for
which three-dimensional structures of both free compo-
nents and the complex were available (that is 17 3 3 mo-
lecular structures). The systems are listed in Table 1 and
comprise enzyme-inhibitor pairs, antibody-antigen as-
semblies, and complexes relaying intracellular signals.
They, essentially, all fall into the category of transient
interactions between globular proteins. The motion of
seven systems (7 3 3 molecules) was sampled by ten
independent parallel simulations of 1 ns length. In ad-
dition, the complete set of 17 3 3 molecules was sub-
jected to shorter, less elaborate 10 3 50 ps simulations
(see the Experimental Procedures). The setup of several
short simulations yields better conformal sampling than
one long simulation (Caves et al., 1998).

We define flexibility as the average pairwise distance
between MD snapshots taken from the second half of
mutually independent simulations. The evaluation of
pairwise distances eliminates the need for an arbitrary
reference structure. Distances were only calculated be-
tween snapshots from independent simulations, which
diminishes the influence of the sampling interval. Other-
wise, the high similarity of neighboring snapshots would
create a subpopulation of small distances that would
distort the mean as well as width of the overall distri-
bution.

Figure 1 shows the flexibility of the 17 protein pairs be-
fore and after binding. There was no common tendency
toward restricted motion. We observed both decreased
and increased fluctuations, and, as shown in Figure 2A,
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Figure 1. The Flexibility of 34 Proteins before and after Binding

Flexibility is determined for all heavy atoms from the 10 3 50 ps simulations. Flexibility was defined as the average pairwise distance of simulation

snapshots. Error bars quantify the standard deviation. There is no trend toward increased or decreased flexibility.
the flexibility remained, on average, unchanged. How-
ever, shifts of dynamics spread unevenly through differ-
ent regions of the proteins. Figure 2A compares the av-
erage effect of binding on the flexibility of contact and
noncontact surfaces as well as backbone atoms. Not
surprisingly, binding sites lost conformational freedom
upon formation of the protein complex. However, re-
gions outside the contact area often experienced mod-
erate gains of mobility (this is not an artifact of superpo-
sitioning; also, the conformations of the complex were
fitted separately for receptor and ligand). The assump-
tion that binding generally restricts the flexibility of pro-
teins is thus not supported by our simulations, which is
in line with the picture emerging from experimental stud-
ies (Forman-Kay, 1999). A redistribution rather than loss
of mobility may be a common feature of protein-protein
interactions.

The shorter simulations did not adequately sample the
slow, residual intermolecular motions of receptors and
ligands in protein complexes and were not sufficient
for the calculation of entropies (see below). We therefore
performed extended and more elaborate simulations of
10 3 1 ns length on a subset of seven complexes. Rep-
resentative snapshots of these 21 simulations are

Figure 2. The Average Flexibility before and after Binding

(A) The flexibility before and after binding averaged over 34 proteins

(data are derived from the 10 3 50 ps simulations). The white bars

are the average of the standard deviations given in Figure 1. Binding

sites generally lose flexibility, whereas other regions often gain flex-

ibility. The flexibility of the overall protein appears, on average, to be

unaffected by binding. (The measure also depends on the size and

shape of the considered region. A fair comparison is thus only pos-

sible for the free and bound flexibilities of the same atom selection).

(B) The flexibility of 14 proteins, simulated on a longer time scale

(10 3 1 ns), before and after binding. The subset is not representa-

tive for the 34 proteins in (A).
shown in Figure 3. The selected set mirrored the diver-
sity of the complete list of 17 complexes but was (owing
to computational restraints) somewhat biased to smaller
systems. The longer simulations yielded a similar pat-
tern of flexibility changes (Figure 2B). The overall flexibil-
ity of receptor and ligand structures correlated between
the two very different simulation setups (R = 0.95, P =
1024 for the free ensembles [removing c17 receptor as
outlier]; R = 0.77, P = 0.01 for the bound ensembles).
The less elaborate 10 3 50 ps simulations, performed
on the complete list of complexes, thus appear to be
sufficient for the study of flexibilities. In fact, they cover
the time window available to recognition (Grünberg
et al., 2004).

Our analysis (unlike the simulations) only considered
residues that were resolved in both the free and bound
experimental structures. Only two complexes among
cases 1–14 have fewer unresolved residues than the
free state (which may or may not indicate a lower flexibil-
ity), whereas 6 complexes have more (see Table 1).
Remarkably, and in line with our observations, the unre-
solved residues are, in the majority of these cases, situ-
ated in regions far from the interface, and none of them
are located within the contact region. Complexes 20–22
are the exceptions to this rule. These three complexes
all have interface loops, unresolved in the free crystallo-
graphic structures, that undergo large structural
changes upon complex formation (up to 20 Å Ca dis-
placements).

Calculation of Conformational Entropies

Out of the components of free energy, conformational
entropy seems currently to be the most difficult to calcu-
late (Gohlke and Case, 2004). So far, two studies have
attempted to examine the entropy change of protein
complexation by quasiharmonic analysis. Gohlke and
Case (2004) discarded the approach owing to insuffi-
cient convergence and an unrealistic result. Hsu et al.
(2004) only compared entropies of the individual partner
proteins in the free and bound states and also reported
convergence problems. Their sum of individual (pseudo)
entropy changes aligned with an experimental value, but
the latter comprised a presumably large share of desol-
vation entropy. The calculation did not consider desol-
vation, and the result must thus also be considered
unsatisfactory. In the following sections, we describe a
protocol that combines quasiharmonic analysis with a
careful choice of reference states and yields reasonable,
converged entropy differences. The results of our calcu-
lations are then presented subsequent to a discussion
of possible errors.
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Figure 3. Representative Snapshots from 10 3 1 ns Simulations of the Free and Bound States of Seven Protein-Protein Complexes

For clarity, only the backbone is shown. The ligand and receptor are colored red and blue, respectively. Ten snapshots were selected from each

ensemble by c-means fuzzy clustering, which is described earlier (Gordon and Somorjai, 1992; Grünberg et al., 2004). The increased rigidity of

interface residues and the increased flexibility of regions distant to the interface are often clearly visible. Note the large changes in c02 and c20,

which also experience conformational entropy gains (see Table 3).
Using the same program as Gohlke and Case (2004),
we derived absolute entropies from the 10 3 1 ns en-
sembles of seven free receptors (Srec), ligands (Slig),
and their complexes (Scom). Subtracting the free from
the bound state should yield the change of conforma-
tional entropy induced by binding, that is DSconf =
Scom 2 (Srec + Slig). However, in the one example de-
scribed by Gohlke and Case (2004), this same strategy
overestimated the entropy loss by 790 cal mol21 K21

(compared to a normal mode calculation that was at
least compatible with experimental data). Also in our
case, the difference turned out to be far too negative
for all seven complexes (data not shown).

The effect hence constitutes a systematic error, which
we traced to spurious correlations between receptor
and ligand. Figure 4 shows the normalized covariance
matrix of an artificially constructed trajectory, the com-
bination of a free ligand and a free receptor ensemble.
The matrix reveals unphysical correlations between the
independently simulated molecules (upper-left quad-
rant). Such correlations also occur between unrelated
noninteracting proteins (data not shown). According to
our preliminary analysis, spurious correlations could
originate from inaccuracies in calculating the covariance
matrix from finite simulation data (combined with the
fact that, rather than canceling out, errors add up and
always lower the final entropy). A second important
component is the random correlations between atomic
vibrations that appear to be common and frequent in
any deterministic protein simulation. These spurious
correlations lower the entropy value of the fake complex
(Srec+lig << Srec + Slig), but, more importantly, they also
compromise the entropy calculated for the real com-
plex. Spurious correlations should cancel out if the
bound state is compared to the artificial combination
of free receptor and ligand ensembles. We therefore
calculated the conformational entropy of binding by
using the artificial free ‘‘complex’’ as a reference state:
DSconf = Scom 2 Srec+lig.

Figure 4. Spurious Correlations between Independent Simulations

The trajectory of a free receptor is artificially combined with the tra-

jectory of a free ligand. The correlation matrix shows the expected

intramolecular correlations in the lower-left and upper-right quad-

rants, but it also reveals unphysical correlations between the inde-

pendent simulations (upper-left quadrant). For comparison, the

lower-right quadrant shows ‘‘real’’ crosscorrelations of the two mol-

ecules in the simulation of the protein complex. Data were taken

from the last 500 ps of three single 1 ns simulations of c15. For space

reasons, the plot only considers the x coordinates of every fourth

atom.
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In line with previous observations (Gohlke and Case,
2004; Hsu et al., 2004), the absolute entropy of the free
or bound state did not converge. It generally increased
with the addition of additional simulation data — be it
additional frames of a constant time segment (inset in
Figure 5) or frames that covered a longer time period (in-
set in Figure 6). By contrast, the entropy difference be-

Figure 5. Dependency of Conformational Binding Entropies on the

Sampling Interval

Differences of bound and free conformational entropies were calcu-

lated for the last 10 or 9 3 200 ps (c17, 300 ps; c20, 100 ps) of sim-

ulations covering 10 3 1 ns while using different offsets between the

snapshots (from 0.1 to 1 ps).

Figure 6. Convergence of Conformational Binding Entropies with

Simulation Time

Absolute entropies of the free or bound state do not converge (in-

set). However, the difference of free and bound entropies converges

reasonably well for most protein complexes. Values were calculated

for different time segments from the end of 10 3 1 ns or 9 3 1 ns sim-

ulations of the free and bound states. For example, 100 ps translates

to ten or nine segments covering the range 0.9–1 ns. Snapshots

were taken every 0.2 or (c06, c17, c20) 0.3 ps.
tween the bound and free states showed sufficient con-
vergence. This concerns the density of sampling (see
Figure 5) as well as the necessary time coverage (shown
in Figure 6). For most complexes, sufficient conver-
gence was ensured by 10 or 9 3 300 ps coverage (taken
from the simulation end) and a 0.2 ps sampling interval.
The largest complex, c20, was only sampled every
0.3 ps. The entropy difference calculated for complex
c17 did not converge; the value given below was ob-
tained from the last 9 3 500 ps, with a 0.3 ps sampling
interval.

Subcomponents of the conformational entropy can be
isolated by disrupting correlations. To this end, we
developed a number of entropy calculation protocols,
outlined in Table 2, in which alternate fitting and reorga-
nization of trajectories destroyed different correlations.
The separate superpositioning of receptor and ligand
in the complex trajectory (giving Scom,split) reveals the
entropy content of residual intermolecular motions of
receptor versus ligand (denoted recjlig in Table 3). The
remaining correlations across the binding interface are
uncovered if the complex trajectory is, moreover,
divided into receptor and ligand and reassembled from
independent bound trajectories (Scom,swap). The differ-
ence between Scom,split and Scom,swap (denoted rec3lig
in Table 3) yields the negative entropy contribution
from such correlated motions.

Errors and Limitations of Entropy Calculations

Alternate snapshots or time windows of a single MD
simulation are commonly used to estimate errors when
quantities are calculated from simulations. However,
a deterministic simulation in the nanosecond range can-
not possibly give a converged picture of protein motions
that, in reality, stretch at least to millisecond timescales
(Bouvignies et al., 2005). Variation within a single simula-
tion is hence a poor measure for the variation to be
expected across the conformational space accessible
to the protein. Indeed, Caves et al. (1998) showed that
multiple short simulations sample a larger conforma-
tional space than a single simulation of equivalent
length. Our multiple simulation approach (10 3 1 ns)
thus improves conformal sampling, but, given the large

Table 2. Protocols Used for Entropy Calculations

Number Protocol MDa Analyzeb Fitc Paird Ordere

1 rec free rec r

2 lig free lig l

3 rec+lig free rec+lig r k l 2 intact

4 rec+lig, shuff free rec+lig r k l 2 shuffled

5 rec, bound com rec r

6 lig, bound com lig l

7 com com rec+lig r+l 1 intact

8 com, split com rec+lig r k l 1 intact

9 com, swap com rec+lig r k l 2 intact

10 com, shuff com rec+lig r k l 1 shuffled

a Simulation of free receptor/ligand (free) or of complex (com).
b Consider receptor (rec) and/or ligand (lig).
c Fit trajectories on reference rec (r) and lig (l), separately (r k l) or as

single molecule (r+l).
d Rec and lig taken from the same (1) or two independent (2) simula-

tions.
e Time order of ligand coordinates.
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Table 3. Conformational Binding Entropy and Its Decomposition

DSconf Components DSconf Total

Reca Ligb RecjLigc Rec3Ligd Backbonee All Atomsf

Protocolg / 5-1 6-2 8-7 9-8 7-3 7-3

c02 20 6 38 246 6 19 46 6 3 211 6 1 19 6 26 19 6 50

c06 2196 6 59 31 6 28 55 6 3 28.2 6 1 12 6 16 2101 6 46

c11 2115 6 49 2123 6 47 55 6 5 28.9 6 1 227 6 22 2157 6 57

c15 255 6 34 2103 6 29 70 6 7 26.6 6 1 12 6 14 260 6 49

c16 75 6 46 2144 6 25 45 6 2 213 6 1 40 6 15 20.7 6 41

c17h 283 6 71 2153 6 36 52 6 11 211 6 1 20.4 6 29 2147 6 78

c20 2149 6 34 116 6 39 60 6 9 214 6 2 18 6 16 49 6 48

All values give the difference of bound to free states (in cal mol21 K21).
a Receptor only.
b Ligand only.
c Entropy gain from rigid body motions of receptor against ligand.
d Entropy loss from motions correlated across the binding interface.
e Carbonyl C and O only.
f All heavy atoms.
g Combination of protocols used to calculate this value (see Table 2).
h Not converged.
discrepancy between computationally accessible and
theoretically necessary timescales, it should not be ex-
pected to yield exhaustive sampling either. However,
and more importantly, the availability of several inde-
pendent simulations allows us to assess the impact of
(necessarily) insufficient sampling, which may be largely
neglected in errors that are calculated from a single sim-
ulation.

We estimated errors with a standard jackknife proce-
dure, that is we recalculated all entropy protocols nine or
ten times, leaving out each independent simulation. This
yielded errors of around 48 cal mol21 K21 for the differ-
ence of free and bound total conformational entropies
(see Table 3). Neither Gohlke and Case (2004) nor Hsu
et al. (2004) provide errors for the corresponding result
of their quasiharmonic calculations. Gohlke and Case
(2004) eventually resorted to normal mode analysis
and report a standard error of 5 cal mol21 K21 for differ-
ent snapshots from a single simulation. Hsu et al. (2004)
focused on pseudo entropy differences of small protein
segments for which they extrapolated errors with a block
average procedure from a single simulation. This gave
standard errors of 19 and 60 cal mol21 K21 for the two
largest segments, comprising 198 and 356 atoms, re-
spectively.

Furthermore, we observed that some of the 10 3 1 ns
simulation sets contained singular 1 ns trajectories that
(judged by the rmsd to the start or end structure) kept
diverging, whereas the remaining nine trajectories ap-
peared ‘‘equilibrated’’ over the last 500 ps. These are
not necessarily artifacts, but they serve as another re-
minder of the globally incomplete sampling (and the
issue with single simulation analysis). We sought to sta-
bilize the results against such stochastic events by ex-
cluding outlier trajectories with an automatic procedure
(see Experimental Procedures).

The large error, outlier trajectories, and spurious cor-
relations discussed above highlight that the sampling
procedure still remains the weak point of entropy calcu-
lations. Recently advocated replica exchange simula-
tion methods (Gnanakaran et al., 2003; Habeck et al.,
2005) may help resolve some of these issues. Inaccura-
cies may also arise from the conventional covariance
matrix, which could give an inappropriate description
of the anharmonic multimodal fluctuations in protein
structure (Kitao et al., 1998).

Errors of close to 650 cal mol21 K21 would introduce
an uncertainty of 15 kcal mol21 to calculations of binding
free energies. Substantial improvements are required
before we reach the accuracy needed for predictive or
technical applications. Our individual entropy estimates
are therefore approximate. Nevertheless, the more
global picture emerging from seven different complexes
offers a first insight into how flexibility may generally af-
fect—and be affected by—protein-protein association.
The range of total and disassembled entropy changes
gives a preview of what one can expect from future,
more sophisticated, experiments and calculations.

Conformational Entropy of Binding
Table 3 provides the total conformational entropy of
binding, DSconf, calculated for seven protein complexes.
The values span a wide range from stark entropy loss
(2157 6 57 cal mol21 K21) to substantial gain (49 6 48
cal mol21 K21). The two smallest complexes, c11 and
c15, exhibited a large entropy loss, as did the antibody
antigen system (c06). The largest assembly, c20, yielded
the highest gain of conformational entropy. Two other
comparatively large systems, c02 and c16, gave a mod-
erately positive or unchanged entropy. Another large
complex, c17, seemed to assemble at a high cost of
conformational entropy, but the corresponding value
did not converge. The assumption that conformational
entropy changes may, to some extent, correlate with
protein size and class appears attractive, but our data
are yet too few and approximate to clearly support
such a trend.

Table 3 also gives the (pseudo) entropy difference be-
tween the bound and free states of the individual recep-
tor and ligand proteins (that is, DSrec = Srec

bound 2 Srec

and DSlig = Slig
bound 2 Slig). Clearly, the individual part-

ners can both gain (up to 116 6 39 cal mol21 K21) or
lose conformational entropy upon binding. Neverthe-
less, a loss of conformational entropy seemed to be
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more common than perhaps expected from the analysis
of flexibilities. On the other hand, our selection of seven
complexes was, from the outset, biased toward reduced
flexibility of the bound state (see Figure 1). Notably, in
four of the seven systems, one binding partner gained
(pseudo) entropy. Keeping in mind the generally dimin-
ished flexibility of binding interfaces, this is in itself
a quite surprising result. Moreover, there appears to
be a trend toward entropy compensation between re-
ceptor and ligand. The three complexes with positive
or unchanged DSconf always combined the large entropy
gain of one partner with a sizable loss on the other side.

A simple summation of receptor and ligand entropies
would ignore important entropy contributions (Scom s
Srec

bound + Slig
bound). In the complex, the two partner

molecules still move with respect to each other. This in-
termolecular motion translated into a substantial en-
tropy gain (recjlig in Table 3) of between 45 6 2 and 70
6 7 cal mol21 K21. It thus recovers about half of the
translational and rotational entropy loss. The value is
in remarkable agreement with a ‘‘guess’’ (Janin, 1995)
of 50 cal mol21 K21 made by Finkelstein and Janin
(1989) over 15 years ago. Minh et al. (2005) very recently
devised a different, more specialized quasiharmonic
analysis method to derive this particular entropy contri-
bution from MD simulations. They calculated a contribu-
tion of w70 cal mol21 K21 for the Fasciculin-II/Acetyl-
cholinesterase complex (here c14, not simulated on
the nanosecond scale), which would fall into the range
of values we observed for the different complexes. Con-
trary to this stabilizing entropy of intermolecular motion,
some fluctuations should correlate across the binding
interface (rec3lig in Table 3). Compared to other contri-
butions, there was only moderate crosstalk between re-
ceptor and ligand fluctuations. The smallest complex
lost 6.6 6 1 cal mol21 K21 and the largest lost 14 6 2
cal mol21 K21 to such correlations.

Despite the large uncertainties in individual values,
our calculations demonstrate that the change of confor-
mational entropy should have a considerable influence
on the overall stability of protein complexes. It is per-
haps fundamentally impossible to make general state-
ments as to the sign of this contribution. What can be
concluded is that protein association may not only de-
plete, but also boost, conformational entropy. Larger
complexes especially seem to be able to compensate
for the loss of conformal diversity occurring in the bind-
ing region. Partner proteins may experience yet higher
changes in their individual dynamics, and this might, in
some cases, influence their function.

Attempts are often made at calculating conforma-
tional entropy from direct measurements of order pa-
rameters of the peptide bond plane in NMR relaxation
experiments. For comparison, Table 3 also provides
the change of conformational entropy calculated only
for fluctuations of backbone carbonyl carbon and oxy-
gen, which can differ substantially from the all-atom en-
tropy. The two values were correlated with R = 0.8 (P =
0.03), and the backbone calculation was strongly biased
toward gains of entropy. Backbone atoms make fewer
direct contacts with the binding partner and are hence
less likely to lose mobility upon binding. They neverthe-
less benefit just like side chain atoms from flexibility
gains outside the contact interface. Entropies calculated
from experimental data that are based on subsets of
atoms have thus to be interpreted with care. Unfortu-
nately, there are no relaxation data available for any di-
rect comparison with the values in Table 3.

Overall Entropy of Binding
Overall entropy changes due to binding can be reliably
measured by calorimetry. Such data are available for
the binding of Barnase to Barstar (c11) (Frisch et al.,
1997) as well as for the HIV-1 NefD1–57 to the SH3 domain
of Fyn (c15) (Arold et al., 1998). Data have also been pub-
lished for the interaction between the mouse antibody
fragment FvD1.3 and hen egg white lysozyme (Bhat
et al., 1994; Sundberg et al., 2000), but not for the variant
studied here (c06) that involves an artificial hybrid of
FvD1.3 and human antibody segments (Holmes et al.,
1998). The comparison of experimental and theoretical
entropies of c11 and c15 is complicated by unresolved
residues in the structures of both systems. A total of
18 terminal and 30 nonterminal residues of the free
NefD1–57 as well as 15 terminal and 31 nonterminal resi-
dues of the bound NefD1–57 are disordered and are hence
not present in the simulations. This putative disorder-
order transition of effectively two residues of NefD1–57

as well as two terminal residues within the Barnase/
Barstar complex is also not reflected in the entropy cal-
culations. Salt concentrations, different protonation
states, and other details may introduce additional inac-
curacies.

In contrast to the calculations, the experimental
values also include the entropic contribution from the
solvent. The change of solvent free energy is commonly
estimated from the accessible surface area, DASA, bur-
ied upon folding or binding as DGsolvent = gDASA (Brady
and Sharp, 1997), where g z 47 cal mol21 Å22 (Sharp
et al., 1991; Noskov and Lim, 2001). Around room tem-
perature, it has been shown to be largely of entropic
nature (Privalov and Gill, 1988). Table 4 combines the

Table 4. Computational Estimates and, Where Available,

Experimental Measurements of Overall Binding Entropies

DS

Confa t,rb Solvc Totald Expe DResf

c02 19 6 50 2100 334 253 6 50 0

c06 2101 6 46 2105 135 271 6 46 0

c11 2157 6 57 2101 242 212 6 57 (234g)h 2

c15 260 6 49 298 207 49 6 49 21i 2

c16 20.7 6 41 2103 422 318 6 41 20j 21

c17k 2147 6 78 2108 587 332 6 78 24

c20 49 6 48 2109 556 496 6 48 12

All values give the difference of bound to free states (in cal mol21 K21

at 1 M standard state).
a Conformational entropy.
b Rotational and translational entropy.
c Solvent entropy estimated from buried accessible surface.
d Conf + t,r + Solv.
e Measured entropy change.
f Number of residues resolved in the bound, but not in the free, struc-

ture (2, vice versa).
g Bhat et al., 1994; Sundberg et al., 2000.
h Measured for a related molecule.
i Frisch et al., 1997.
j Arold et al., 1998.
k Not converged.
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changes of vibrational (conformational) entropies given
in Table 3 with rotational and translational entropies
(Gohlke et al., 2003) as well as the estimated gain of sol-
vent entropy and compares this overall value with the
three available experimental binding entropies.

All experimental values fall within the broad error
range of the calculated entropies. In fact, certain devia-
tions are to be expected: ignoring the putative ordering
of residues upon binding may introduce a systematic
error. Furthermore, compared to mouse FvD1.3, the hu-
manized antibody studied here requires additional con-
formational adjustments to bind its target (Holmes et al.,
1998). The entropy loss of c06 may therefore indeed be
larger than measured for the complex of mouse FvD1.3.
Also, the estimate of solvent free energy (and entropy)
from solvent-accessible areas is disputed (Jackson
and Sternberg, 1995; Kyte, 2003) and is not considered
to be accurate (Gohlke and Case, 2004). In spite of the
many uncertainties, our calculations are compatible
with the experimentally observed binding entropies.

Mechanism of Protein-Protein Recognition
Our results (as well as several of the experimental stud-
ies cited in the Introduction) question both the induced
fit (Koshland, 1958) and the conformer selection model
(Monod et al., 1965; Kumar et al., 2000): according to
both models, binding would always need to overcome
a loss of conformational entropy. This apparent contra-
diction between the entropic cost of specific recognition
and an eventually possible entropic gain is resolved by
our previously proposed model (Grünberg et al., 2004).
We suggested to combine the rival ideas of induced fit
and conformer selection into a unified model that
describes the process in three steps: (1) diffusion, (2)
recognition between complementary free conformers,
and (3) relaxation into the bound conformation. By un-
coupling the process of recognition (1 and 2) from the
search for the bound conformation (3), recognition can
transiently restrict conformational entropy, which is
eventually regained in the bound state.

The preexisting equilibrium between high- and low-
affinity conformations (Kirschner et al., 1966; Austin
et al., 1975; Lancet and Pecht, 1976; Foote and Milstein,
1994; Leder et al., 1995; Berger et al., 1999; James and
Tawfik, 2005) should hence not simply be taken for an
equilibrium between the free and bound conformations.
Unfortunately, kinetic experiments cannot usually mon-
itor association and conformational change in parallel.
However, two recent reports hint at further complexity
and support our unified model: an unorthodox protein-
protein binding study by Becker et al. (2003) revealed
a biphasic fluorescence signal composed of a fast con-
centration-dependent step and a slower concentration-
independent process. Very recently, James and Tawfik
(2005) studied the binding of a small molecule to an
antibody. They determined structures of different free
antibody conformations, binding intermediates, and
the bound state, and they performed kinetic experi-
ments. They arrived at a mechanistic model that is iden-
tical to the one proposed by Grünberg et al. (2004). Pro-
tein-protein and protein-small molecule recognition may
thus, on the protein side, operate on common principles.
It should be noted however that we are here studying
transient interactions between globular proteins. The
picture may look different for interactions involving
unstructured, nonglobular partners (Shoemaker et al.,
2000; Levy et al., 2005).

Conclusions

In the majority of cases examined here, binding did not
impair a protein’s overall flexibility, and, ultimately, con-
formational entropy could be lost but also gained. In
fact, this entropic contribution should constitute a major
component (positive or negative) in the balance of
forces governing the stability of protein complexes.
Substantial shifts in the dynamics of individual partner
proteins lead to large, and often opposing, negative or
positive entropy contributions. These are overlaid by
significant residual intermolecular motions that gener-
ally compensate for about half of the loss of translational
and rotational entropy. This complex picture is at odds
with the simplifying traditional models of the protein-
protein binding process and indicates that specific rec-
ognition is not necessarily dependent on the search for
the bound conformation. Furthermore, the large effect
of molecular flexibility may generally hamper the evalu-
ation of interaction energies from static structures.

Structure fluctuations have an important impact on
the thermodynamics of protein-protein interaction. The
proper treatment of molecular dynamics may well be
the key to our understanding of this fundamental pro-
cess.

Experimental Procedures

We integrated and automated the miscellaneous tasks of data man-

agement, analysis, and handling of external programs in a modular

object-oriented Python library that will be published elsewhere.

MD Simulations

The X-Plor (Brünger, 1992) simulations performed on 33 free pro-

teins (c06 and c08 share the same ligand) have been described

before (Grünberg et al., 2004) and were here extended to the 17 com-

plexes. In short, the proteins were surrounded by a 9 Å layer of water

and subjected to 10 parallel, independent simulations of 50 ps length

each, summing up to 500 ps total simulation time per molecule.

Extended simulations were performed on 7 complexes and their

free components (21 protein structures) with Amber 7.0 (Pearlman

et al., 1995) by using the modified all-atom force field parm98

(Wang et al., 2000). Hydrogens and waters were removed, and the

proteins were subjected to a WhatIf hydrogen bond network optimi-

zation (Hooft et al., 1996). Breaks and premature ends of peptide

chains (due to unresolved residues) were capped with a N-methyl-

amine or acetyl group, but no attempts were made to model missing

residues. We retained GTP, GDP, or ATP nucleotides (Meagher et al.,

2003) and Mg2+ ions (this concerns c17 and c20). Hydrogens were

added, and each protein was surrounded by a box of TIP3P water

(Jorgensen et al., 1983) with at least a 10 Å distance between the

protein and the edge of the box. Net charges were neutralized with

Na+ or Cl2. The solvent was minimized while keeping all protein co-

ordinates restrained.

The following simulation protocol was applied to ten independent

copies of each molecule. Bond lengths involving hydrogen atoms

were fixed with the SHAKE algorithm (van Gunsteren and Ber-

endsen, 1977). Periodic boundary conditions were applied with a

direct-space nonbonded cutoff of 9 Å and particle mesh Ewald

(PME) treatment of long-range electrostatic forces (Essmann et al.,

1995). The solvent was heated to 300 K over 10 ps NVT MD and

was equilibrated with 10 ps NPT MD at 300 K, keeping the protein

coordinates harmonically restrained (K = 50 kcal mol21) and apply-

ing an integration time step of 1 fs and temperature control (time

constant of 0.5 ps) (Berendsen et al., 1984). Restraints on the solute

were then stepwise released during 20 ps NPT MD. During the entire
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40 ps equilibration phase, velocities were reassigned every 1 ps

from a Maxwell distribution. A production MD of 1 ns was then per-

formed by using an integration time step of 2 fs under NVT condi-

tions at 300 K with the default time constant of 1 ps for heat bath

coupling. This protocol of minimization, equilibration, and simula-

tion was automated, parallelized, and applied in identical fashion

to all 21 proteins and resulted in 10 independent 1 ns trajectories

for each free receptor, free ligand, and complex.

We calculated the trace of mean Ca distance to the last structure

for each single 1 ns simulation and determined the gradient of this

distance over the last 500 ps by a linear least-squares fit (excluding

the last 50 ps). Single trajectories were classified as outliers if their

gradient fell 1.5 standard deviations below the average of all 10 sim-

ulations (this does not apply to the 10 3 50 ps simulations).

Water molecules, hydrogens, nonprotein atoms, and any atom not

present in both the free and bound structures were removed prior to

the following analysis.

Flexibility

Flexibility was defined as the average pairwise distance between

simulation snapshots. Snapshots were extracted from the last

30 ps of the shorter 10 3 50 ps simulations in an interval of 2 ps.

The rmsd was calculated (after individual least-squares fitting) be-

tween every pair of structures that did not stem from the same

50 ps trajectory. The same procedure was applied to the longer

10 3 1 ns simulations. Here, snapshots were taken in an interval of

5 ps from the last 500 ps of each (nonoutlier) 1 ns trajectory.

The protein surface was defined as any atom participating in the

molecular surface of free or bound structures as calculated with

FastSurf (Tsodikov et al., 2002) by using a probe radius of 1.4 Å.

The binding interface was defined as any surface atom within 6 Å

of the other molecule after the superposition of the two free struc-

tures on the bound state.

Entropy Calculations

Entropy differences were determined from a combination of several

quasiharmonic calculations applied to both free and bound trajecto-

ries by using different protocols for the superposition and rearrange-

ment of coordinate frames. Each single protocol consisted of the fol-

lowing steps: (1) certain single trajectories were excluded from the

calculation either because they were classified as outliers or in order

to estimate errors. Additional trajectories were removed arbitrarily to

adjust receptor, ligand, and complex ensembles to the same num-

ber of independent trajectories (nine in most cases). (2) We removed

all hydrogens and nonprotein atoms, as well as any atom not com-

mon to both the free and bound structures. Judging from complex

c15, removing hydrogens introduces an error to binding entropies

(27.9 cal mol21 K21 difference) but was essential for scaling up

the calculations. (3) Receptor coordinates were in some protocols

paired up with ligand coordinates from an independent trajectory,

either with or without retaining the relative time order of ligand

frames. (4) The single trajectories were iteratively fitted to their re-

spective average until the rms distance between the last and the pre-

vious average structure fell below 1026 Å and were then transformed

‘‘en bloc’’ onto the bound state. (5) The modified set of coordinate

frames was exported into Amber file format and passed to the ptraj

program of Amber 8.0 (Pearlman et al., 1995) for the calculation of

the mass-weighted covariance matrix and determination of vibra-

tional, rotational, and translational entropies. We automated steps

(1)–(5) and parallelized the calculation of ten different protocols,

which are summarized in Table 2.

For each complex, we evaluated the convergence of free versus

bound entropy differences by repeating the ten calculations by us-

ing different starting frames and different frame offsets. Errors

were estimated by repeating all calculations nine or ten times,

each time excluding a single trajectory from the sets of free and

bound simulations. The standard error was estimated with the jack-

knife formula s = (n21 [n 2 1] S[DSn2I 2 DSn]2)1/2. About 200 individ-

ual entropy calculations were hence required per complex to evalu-

ate the convergence and errors of the change in total conformational

entropy and entropy components. The individual calculations lasted

between several minutes and several hours, depending on the size

of the system. Parallelization was therefore crucial.
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Erratum

Flexibility and Conformational Entropy in Protein-Protein
Binding

Raik Grünberg,1 Michael Nilges,1 and Johan Leckner2,*
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*Correspondence: johan.leckner@chalmers.se

(Structure 14, 683–693; April 2006)
In Table 4 of this paper, all three values in the sixth column (with the heading ‘‘Exp’’) should be shifted one position
upward. The corrected table is below.

DOI: 10.1016/j.str.2006.06.003

Table 4. Computational Estimates and, Where Available, Experimental Measurements of Overall Binding Entropies

DS

Conf a t,r b Solv c Totald Expe DResf

c02 19 6 50 2100 334 253 6 50 0

c06 2101 6 46 2105 135 271 6 46 (234g)h 0

c11 2157 6 57 2101 242 212 6 57 21i 2

c15 260 6 49 298 207 49 6 49 20 j 2

c16 20.7 6 41 2103 422 318 6 41 21

c17k 2147 6 78 2108 587 332 6 78 24

c20 49 6 48 2109 556 496 6 48 12

All values give the difference of bound to free states (in cal mol21 K21 at 1 M standard state).
a Conformational entropy.
b Rotational and translational entropy.
c Solvent entropy estimated from buried accessible surface.
d Conf + r,t + Solv.
e Measured entropy change.
f Number of residues resolved in the bound, but not in the free, structure (2, vice versa).
g Bhat et al., 1994; Sundberg et al., 2000.
h Measured for a related molecule.
i Frisch et al. 1997.
j Arold et al. 1998.
k Not converged.
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